302. Sesquiterpenoids. Part II.¹ The Stereochemistry of Isophoto-X-Ray Analysis of 2-Bromodihydroisophoto-asantonic Lactone: santonic Lactone Acetate²

By J. D. M. ASHER and G. A. SIM

Crystals of 2-bromodihydroisophoto-a-santonic lactone acetate belong to the orthorhombic system, space group $P2_12_12_1-D_2^4$, with four molecules of $C_{17}H_{23}BrO_5$ in a unit cell of dimensions a = 11.05, b = 19.23, c = 7.93 Å. A detailed X-ray study establishes the molecular stereochemistry shown in (III); it follows that isophoto- α -santonic lactone has the stereochemistry shown in (II). Phase determination was based initially on the bromine atom, and after the calculation of a number of three-dimensional electron-density distributions the atomic parameters were refined by the method of least squares. The final discrepancy, R, over the 865 observed reflexions is 12·9%.

The photochemistry of the sesquiterpenoid lactone α -santonin (I) has been extensively investigated.³ Irradiation of α -santonin in aqueous acetic acid yields isophoto- α -santonic lactone which was shown 4 to have the constitution (II). Much of the stereochemistry, however, was not established and has been the subject of controversy.^{3,5}

Bromination of dihydroisophoto- α -santonic lactone acetate gives a bromo-derivative ⁶ whose crystal structure we have elucidated. Our results prove that this derivative has the constitution and relative stereochemistry shown in (III); it follows, therefore, that the stereochemistry of isophoto- α -santonic lactone is as in (II), the absolute configuration shown being firmly established chemically.³

The configuration at C(11), α -methyl, is opposite to that generally accepted hitherto for α -santonin,^{7,8} and as epimerisation at C(11) has been shown not to occur in the conversion of α -santonin into 2-bromodihydroisophoto- α -santonic lactone ⁶ it follows that the configuration of α -santonin must be as in (I). Since our preliminary communication,² further proof of the revised configuration at position 11 in α -santonin has been provided by the degradation of α -santonin to (+)-benzovlalanine⁹ and by our X-ray analysis of 2-bromo-a-santonin.10

The crystal structure of 2-bromodihydroisophoto-a-santonic lactone acetate was solved by means of the usual phase-determining heavy-atom method.¹¹ The arrangement of the

¹ The Paper by Hamilton, McPhail, and Sim, J., 1962, 708, is regarded as Part I.

² Preliminary communication, Proc. Chem. Soc., 1962, 111.

³ For reviews see Barton, Proc. Chem. Soc., 1958, 61; Barton, Helv. Chim. Acta, 1959, 42, 2604; de Mayo and Reid, Quart. Rev., 1961, 15, 393.

⁴ Barton, de Mayo, and Shafiq, J., 1957, 929.
⁵ Djerassi, Osiecki, and Herz, J. Org. Chem., 1957, 22, 1361; Huffman, Experientia, 1960, 16, 120.
⁶ Barton, Miki, Pinhey, and Wells, Proc. Chem. Soc., 1962, 112; Barton, Levisalles, and Pinhey, and Wells, Proc. Chem. Soc., 1962, 112; Barton, Levisalles, and Pinhey, and Science and Scie

J., 1962, 3472.

⁷ See Cocker and McMurry, *Tetrahedron*, 1960, 8, 181.
 ⁸ Contrast Miki, *J. Pharm. Soc. Japan*, 1955, 75, 416.
 ⁹ Nakazaki and Arakawa, *Proc. Chem. Soc.*, 1962, 151.

 ¹⁰ Asher and Sim, Proc. Chem. Soc., 1962, 335; and unpublished work.
 ¹¹ Robertson and Woodward, J., 1937, 219; 1940, 36; Sim, in "Computing Methods and the Phase Problem in X-Ray Crystal Analysis," ed. Pepinsky, Robertson, and Speakman, Pergamon, Oxford, 1961, p. 227.

bromine atoms in the unit cell is approximately centrosymmetrical, and spurious planes of symmetry in the early three-dimensional electron-density distributions made the location of atomic sites difficult. However, the eventual recognition in the electron-density distributions of known molecular features, such as the five- and seven-membered carbocyclic rings, and the incorporation of the corresponding atoms in the phasing calculations, enabled the troublesome pseudo-symmetry to be overcome in the later electron-density distributions.

Thirteen three-dimensional electron-density distributions were evaluated, during which the average discrepancy (R) between calculated and measured structure amplitudes dropped from $45 \cdot 1$ to $20 \cdot 2\%$. The positional and thermal atomic parameters were then further refined by the method of least squares, and the value of R decreased to a final value of $12 \cdot 9\%$ over the 865 measured structure amplitudes.

The final electron-density distribution over one molecule is shown in Fig. 1 as superimposed contour sections drawn parallel to (001). The atomic arrangement corresponding to this electron-density distribution is explained in Fig. 2. The interatomic distances and valency angles calculated from the final atomic co-ordinates (see Table 1) are listed in Table 2.

FIG. 1. The final three-dimensional electron-density distribution for bromodihydroisophoto - α -santonic lactone acetate shown by means of superimposed contour sections drawn parallel to (001) and covering the region of one molecule. Contour interval 1 eÅ⁻³, except around the bromine atom where it is 3 eÅ⁻³

FIG. 2. The arrangement of atoms corresponding to Fig. 1

TABLE 1	
Atomic co-ord	inates

(Origin of co-ordinates as in "International Tables," *)

			(0118111	01 00 010					,		
Λ tom	x/a	y b	z c	Atom	x a	y/b	z c	Atom	x a	y b	z c
C(1)	-0.1819	0·2011	0.2631	C(9)	-0.0316	0.1378	0.4447	C(17)	-0.1712	0.3240	-0.2675
C(2)	-0.2895	0.2463	0.2763	C(10)	-0.1662	0.1655	0.4252	O(18)	-0.4549	0.2587	0.0461
C(3)	-0.3729	0.2225	0.1280	C(11)	0.0378	0.0155	0.0842	O(19)	-0.1291	0 ·0 605	-0.0723
C(4)	-0.3373	0.1510	0.0764	C(12)	-0.0310	0.0175	-0.0866	O(20)	-0.0061	0.0056	-0.2318
C(5)	-0.2003	0.1534	0.1048	C(13)	0.1728	0.0094	0.0556	O(21)	-0.1841	0.2188	-0.4292
C(6)	-0.1416	0 ·0 812	0.0943	C(14)	-0.3852	0.1280	-0.0883	O(22)	-0.0242	0 ·2 911	-0.4832
C(7)	-0.0084	0 ·0 781	0.1596	C(15)	-0.2572	0.1115	0.4872	Br	-0.2576	0.3462	0.2386
C(8)	0.0001	0.0731	0.3521	C(16)	0 ·1140	0.2754	-0.4104				

* "International Tables for X-Ray Crystallography," The Kynoch Press, Birmingham, 1952, Vol. I.

Asher and Sim:

TABLE 2

Interatomic distances (Å) and angles

			1 ntramo	lecular b	onded distances			
	$\begin{array}{c} C(1)-C(2)\\ C(1)-C(5)\\ C(1)-C(10)\\ C(2)-Br\\ C(2)-Br\\ C(2)-C(3)\\ C(3)-C(4)\\ C(3)-O(18) \end{array}$	1·48 1·57 1·47 1·98 1·56 1·49 1·31	$\begin{array}{c} C(4)-C(5)\\ C(4)-C(14)\\ C(5)-C(6)\\ C(6)-C(7)\\ C(6)-C(7)\\ C(6)-O(19)\\ C(7)-C(8) \end{array}$	1.53 1.48 1.53 1.56 1.39 1.53	$\begin{array}{c} C(7)-C(11)\\ C(8)-C(9)\\ C(9)-C(10)\\ C(10)-C(15)\\ C(10)-O(21)\\ C(11)-C(12) \end{array}$	$1 \cdot 44$ $1 \cdot 49$ $1 \cdot 59$ $1 \cdot 53$ $1 \cdot 56$ $1 \cdot 55$	$\begin{array}{c} C(11)-C(13)\\ C(12)-O(19)\\ C(12)-O(20)\\ C(16)-C(17)\\ C(16)-O(21)\\ C(16)-O(22)\\ \end{array}$	1.51 1.37 1.26 1.60 1.34 1.19
			Intramolec	ular non	-bonded distances			
	$\begin{array}{c} C(1) \cdots C(7) \\ C(1) \cdots C(8) \\ C(1) \cdots C(14) \\ C(1) \cdots C(16) \\ C(1) \cdots O(18) \\ C(1) \cdots O(19) \\ C(1) \cdots O(22) \\ C(2) \cdots C(6) \\ C(2) \cdots C(9) \\ C(2) \cdots C(14) \\ C(2) \cdots C(15) \\ C(2) \cdots C(16) \\ C(16) \\$	3.15 3.26 3.85 3.65 3.65 3.84 3.17 3.85 3.78 3.78 3.83 3.11 3.20	$\begin{array}{c} C(3) \cdots C(10) \\ C(3) \cdots C(15) \\ C(4) \cdots C(7) \\ C(4) \cdots C(10) \\ C(4) \cdots C(15) \\ C(4) \cdots C(15) \\ C(5) \cdots Br \\ C(5) \cdots C(8) \\ C(5) \cdots C(9) \\ C(5) \cdots C(11) \\ C(5) \cdots C(12) \\ C(5) \cdots C(15) \end{array}$	3.46 3.78 3.95 3.36 3.46 3.12 3.91 3.34 3.29 3.74 3.55 3.20	$\begin{array}{c} C(6) \cdots C(9) \\ C(6) \cdots C(10) \\ C(6) \cdots C(13) \\ C(6) \cdots C(14) \\ C(6) \cdots C(15) \\ C(6) \cdots C(20) \\ C(7) \cdots C(10) \\ C(7) \cdots C(10) \\ C(7) \cdots C(15) \\ C(7) \cdots C(20) \\ C(8) \cdots C(12) \\ C(8) \cdots C(15) \\ C(8) \cdots C(15) \\ C(8) \cdots C(19) \end{array}$	3.22 3.10 3.75 3.19 3.42 3.42 3.21 3.84 3.50 3.66 3.13 3.66	$\begin{array}{cccc} C(9) & \cdots & C(16) \\ C(9) & \cdots & O(22) \\ C(10) & \cdots & Br \\ C(10) & \cdots & C(17) \\ C(10) & \cdots & O(12) \\ C(13) & \cdots & O(19) \\ C(14) & \cdots & O(19) \\ C(15) & \cdots & C(16) \\ C(16) & \cdots & Br \\ O(18) & \cdots & Br \\ O(19) & \cdots & O(20) \\ O(21) & \cdots & Br \end{array}$	3.03 3.00 3.91 3.90 2.97 3.62 3.12 3.62 3.62 3.12 3.62 3.12 3.62 3.12 3.62 3.52 3.62
	$C(2) \cdots O(21)$ $C(2) \cdots O(22)$	$2.66 \\ 3.60$	$C(5) \cdots O(18)$ $C(5) \cdots O(21)$	3·50 3·91	$C(8) \cdots O(21)$ $C(9) \cdots C(11)$	3.87	$O(21) \cdots O(22)$	2.29
C	$C(3) \cdots C(6)$	3.74	0(0) 0(21)	0.01	0(3) *** 0(11)	3.19	$O(22) \cdots Dr$	3.90
6	$D(22) \cdots C(2)$	9.15	Intermole	ecular di	stances (<4 Å)	9.00	0(0)	
	$\begin{array}{c} 0(22) & \cdots & C(3)_{\rm I} \\ 0(22) & \cdots & O(18)_{\rm I} \\ C(17) & \cdots & O(18)_{\rm I} \\ C(5) & \cdots & O(18)_{\rm I} \\ C(16) & \cdots & O(18)_{\rm I} \\ C(16) & \cdots & C(12)_{\rm II} \\ C(16) & \cdots & C(3)_{\rm I} \\ O(22) & \cdots & C(15)_{\rm I} \end{array}$	3.15 3.29 3.37 3.41 3.44 3.46 3.48 3.50	$\begin{array}{c} C(13) \cdots O(19)_{\rm III} \\ C(7) \cdots O(18)_{\rm II} \\ O(18) \cdots C(1)_{\rm IV} \\ C(4) \cdots O(20)_{\rm III} \\ C(8) \cdots O(20)_{\rm V} \\ C(1) \cdots C(13)_{\rm VI} \\ C(15) \cdots C(14)_{\rm V} \end{array}$	3.57 3.58 3.59 3.59 3.62 3.63 3.66 3.66	$\begin{array}{c} O(22) \cdots O(18)_1 \\ C(13) \cdots Br_{II} \\ C(15) \cdots O(20)_{III} \\ C(16) \cdots C(2)_I \\ C(9) \cdots O(20)_V \\ C(17) \cdots O(20)_V \\ O(22) \cdots O(21)_I \\ C(14) \cdots O(20)_{III} \end{array}$	3.68 3.71 3.74 3.76 3.78 3.82 3.83 3.83 3.87	$\begin{array}{cccc} C(6) & \cdots & O(18)_{11} \\ C(15) & \cdots & O(19)_V \\ O(21) & \cdots & C(14)_V \\ C(9) & \cdots & Br_I \\ C(15) & \cdots & C(6)_{HII} \\ O(19) & \cdots & O(18)_{1I} \\ O(21) & \cdots & O(18)_I \\ O(22) & \cdots & C(4)_I \end{array}$	3.87 3.89 3.91 3.95 3.96 3.98 3.98 3.98 3.99
	The subscripts	refer to	the following posi	tions:				
	$ I \frac{1}{2} + x, \frac{1}{2} - y \\ II \frac{1}{2} + x, \frac{1}{2} - y $	y, 1 - z, y, - z, y, - z, z	III - IV -	$-\frac{1}{2} - x,$ $-\frac{1}{2} + x,$	$-y, \frac{1}{2} + z.$ $\frac{1}{2} - y, -z.$		$ \begin{array}{c} V & x, & y, 1 + \\ VI & -x, \frac{1}{2} + y, \frac{1}{2} - \end{array} $	- z. z.
C	(9)C(1)C(z)	1059		Valency	angles			
	$\begin{array}{l} & (2) \mathbb{C}(1) \mathbb{C}(5) \\ & (2) \mathbb{C}(1) \mathbb{C}(10) \\ & (2) \mathbb{C}(1) \mathbb{C}(10) \\ & (1) \mathbb{C}(2) \mathbb{B}r \\ & (2) \mathbb{C}(2) \mathbb{C}(3) \\ & (3) \mathbb{C}(2) \mathbb{B}r \\ & (2) \mathbb{C}(3) \mathbb{C}(4) \\ & (2) \mathbb{C}(3) \mathbb{C}(4) \\ & (2) \mathbb{C}(3) \mathbb{C}(4) \\ & (2) \mathbb{C}(3) \mathbb{C}(18) \\ & (3) \mathbb{C}(4) \mathbb{C}(5) \end{array}$	107° 108 116 115 105 106 109 129 123 101	$\begin{array}{c} C(3)C(4)C(14)\\ C(5)C(4)C(14)\\ C(1)C(5)C(4)\\ C(1)C(5)C(6)\\ C(4)C(5)C(6)\\ C(5)C(6)C(7)\\ C(5)C(6)C(7)\\ C(5)C(6)C(19)\\ C(7)C(6)O(19)\\ C(6)C(7)C(8)\\ C(6)C(7)C(11)\\ \end{array}$	115° 120 105 121 113 115 111 102 113 103	$\begin{array}{c} C(8)C(7)C(11)\\ C(7)C(8)C(9)\\ C(8)C(9)C(10)\\ C(1)C(10)C(9)\\ C(1)C(10)O(21)\\ C(9)C(10)O(21)\\ C(9)C(10)O(21)\\ C(15)C(10)C(1)\\ C(15)C(10)C(9)\\ C(15)C(10)C(21)\\ C(7)C(11)C(12) \end{array}$	110° 115 117 111 109 106 121 111 114 100	$\begin{array}{c} C(7)C(11)C(13)\\ C(12)C(11)C(13)\\ C(11)C(12)O(19)\\ C(11)C(12)O(20)\\ O(19)C(12)O(20)\\ C(17)C(16)O(22)\\ O(21)C(16)C(17)\\ O(21)C(16)O(22)\\ C(6)O(19)C(12)\\ C(6)O(19)C(12)\\ C(10)O(21)C(16)\\ \end{array}$	119° 111 109 133 118 122 109 129 109 123
				T				

TABLE 3

Standard deviations of the final atomic co-ordinates (Å)

Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	Atom	$\sigma(x)$	$\sigma(\gamma)$	$\sigma(z)$	Atom	$\sigma(x)$	$\sigma(v)$	$\sigma(z)$
C(1)	0.020	0.018	0.030	C(9)	0.026	0.025	0.041	C(17)	0.026	0.028	0.040
C(2)	0.021	0.021	0.033	C(10)	0.024	0.023	0.032	O(18)	0.019	0.018	0.024
C(3)	0.025	0.026	0.035	C(11)	0.027	0.024	0.032	O(19)	0.017	0.017	0.023
C(4)	0.024	0.024	0.032	C(12)	0.028	0.025	0.034	O(20)	0.020	0.018	0.022
C(5)	0.025	0.024	0.038	C(13)	0.026	0.026	0.036	O(21)	0.018	0.015	0.023
C(6)	0.027	0.024	0.031	C(14)	0.031	0.032	0.040	O(22)	0.017	0.019	0.027
C(7)	0.025	0.023	0.033	C(15)	0.026	0.022	0.030	Br	0.003	0.002	0.005
C(8)	0.026	0.022	0.032	C(16)	0.023	0.028	0.031				

The standard deviations of the final atomic co-ordinates were estimated in the usual manner from the least-squares residuals (see Experimental section) and are given in Table 3; from the results the average estimated standard deviation (e.s.d.) of a carbon-carbon or

The average carbon-carbon single bond length is 1.52 Å, not significantly different from the accepted value of 1.545 Å. The average sp^3 -carbon-oxygen single-bond length is 1.47 Å, whereas the average sp^2 -carbon-oxygen single-bond length is only 1.35 Å; the difference demonstrates that in lactone and ester groups, just as in carboxylic acids, the structure (IV) makes an important contribution. This contribution implies that the atoms C(6), O(19), C(12), O(20), and C(11) of the γ -lactone ring should be coplanar. Accordingly, the mean plane through these atoms was calculated by the method of Schomaker et al^{12} The atomic deviations from this plane (see Table 4) prove that the atoms C(6), O(19), C(12), O(20), and C(11) are indeed closely coplanar but that the γ -lactone ring is nevertheless significantly non-planar, since the atom C(7) is displaced by 0.60 Å from the

TABLE 4

Deviations (Å) of the atoms from planes connected with the five-membered rings

Plan	e through	C(6), C(2	11), C(12), O(19), O(20)		Plane th	nrough C(1	l), C(2), C(3), C(5)	
C(6)		-0.018	C(12)	-0.041	C(1)		-0.015	C(4)	•••••	0.541
C(7)	•••••	0.595	O(19)	0.033	C(2)	••••	0.012	C(5)		0.008
C(11)	•••••	0.020	O(20)	0.005	C(3)	•••••	-0.007			

plane. Comparable results have been obtained for the γ -lactone rings in himbacine hydrobromide,¹³ bromogeigerin acetate,¹ and 2-bromo- α -santonin,¹⁰ As expected, the five atoms C(10), O(21), C(16), O(22), and C(17) of the ester group are also closely coplanar.

The angles around carbon atoms 12 and 16 conform to the pattern noted in carboxylic acids,¹⁴ the angles C(17)C(16)O(21) and C(11)C(12)O(19) being approximately tetrahedral, whereas the angles C(17)C(16)O(22), O(21)C(16)O(22), C(11)C(12)O(20), and O(19)C(12)O(20) exceed 120° .

The cycloheptane ring adopts a chair conformation but is somewhat flattened, since the valency angles are consistently greater than tetrahedral, the mean value being 115°. Similar large values for the valency angles in seven- and higher-membered rings have been noted in bromogeigerin acetate,¹ isoclovene hydrochloride,¹⁵ cyclononylamine hydrobromide,¹⁶ and 1,6-trans-diaminocyclodecane dihydrochloride,¹⁷ In the five-membered rings the average valency angle (105°) is distinctly less than tetrahedral and in good agreement with the average values for the five-membered rings in other molecules, e.g., hydroxy-L-proline (106°),¹⁸ clerodin bromolactone (106°),¹⁹ and isoclovene hydrochloride (105°) .¹⁵ These values are consistent with the non-planarity and consequent angle deformations in cyclopentane rings.²⁰ In accord with this, the ring C(1)C(2)C(3)C(4)C(5) is distinctly non-planar; atoms C(1), C(2), C(3), and C(5) are closely coplanar but C(4)deviates by 0.54 Å from the mean plane through these atoms (see Table 4).

Fig. 3 shows the arrangement of the molecules in the crystal as viewed in projection along the a- and c-axes. The intermolecular contacts (Table 2) are all greater than 3 Å and correspond to normal van der Waals interactions; the shortest separations involve oxygen atoms.

¹³ Fridrichsons and Mathieson, Acta Cryst., 1962, 15, 119.

¹⁴ Cochran, Acta Cryst., 1953, 6, 260; Ahmed and Cruickshank, *ibid.*, 385; Ferguson and Sim, *ibid.*, 1961, 14, 1262; J., 1962, 1767.
 ¹⁵ Clunie and Robertson, J., 1961, 4382.
 ¹⁶ Bryan and Dunitz, Helv. Chim. Acta, 1960, 43, 3.
 ¹⁷ Huber-Buser and Dunitz, Helv. Chim. Acta, 1960, 43, 760.
 ¹⁸ Durahme and Temphand Acta, 1967, 55, 410

- ¹⁸ Donohue and Trueblood, Acta. Cryst., 1952, 5, 419.
- ¹⁹ Paul, Sim, Hamor, and Robertson, J., 1962, 4133.

²⁰ Pitzer and Donath, J. Amer. Chem. Soc., 1959, 81, 3213; Brutcher, Roberts, Barr, and Pearson, ibid., p. 4915.

¹² Schomaker, Waser, Marsh, and Bergman, Acta Cryst., 1959, 12, 600.

1588

EXPERIMENTAL

Crystal Data.—2-Bromodihydroisophoto- α -santonic lactone acetate, C₁₇H₂₃BrO₅; M = 387·3; m. p. 117—118° (decomp.). Orthorhombic, $a = 11\cdot05$, $b = 19\cdot23$, $c = 7\cdot93$ Å, U = 1685 Å, $^3 Z = 4$, $D_c = 1\cdot526$ g.cm.⁻³, F(000) = 800, space group $P2_12_12_1-D_2^4$. Absorption coefficient for X-rays ($\lambda = 1\cdot542$ Å) $\mu = 38\cdot7$ cm.⁻¹.

Experimental Measurements.—Rotation, oscillation, and Weissenberg photographs were taken with copper K_{α} ($\lambda = 1.542$ Å) radiation; precession photographs were taken with molybdenum K_{α} ($\lambda = 0.7107$ Å) radiation. The unit-cell dimensions were obtained from the rotation and precession photographs. The space group was determined uniquely from the systematic halvings in the X-ray spectra. For the intensity measurements small crystals were employed, completely bathed in a uniform X-ray beam, and no corrections for absorption were applied.

The hk0—hk4 spectra were recorded photographically by means of an equi-inclination Weissenberg camera, whilst the 0kl and k0l spectra were obtained with a precession camera. The intensities were estimated visually and were corrected by the usual factors (Lorentz, polarization, and rotation ²¹). The various layers were placed on the same relative scale by comparison of common reflections on different photographs; the absolute scale was obtained at a later stage by correlation with the calculated structure amplitudes, $|F_c|$. In all, 865 independent structure amplitudes, $|F_o|$, were evaluated.

The crystals, stored at room temperature, decomposed in a few months to a black resinous gum, and so we have no experimental value for their density.

Structure Analysis.—The position of the bromine atom was determined from two-dimensional Patterson syntheses and sections through the three-dimensional Patterson synthesis P(UVW) at $U = \frac{1}{2}$, $V = \frac{1}{2}$, and $W = \frac{1}{2}$. These sections are shown in Fig. 4. The co-ordinates obtained for the bromine atom were x = 0.242, y = 0.152, z = 0.233.

Structure factors based on the bromine atom alone were calculated; the value of R, the average discrepancy between measured and calculated structure amplitudes, was 45.1%. With the measured |F| values and the calculated phase angles we then evaluated a three-dimensional electron-density distribution. The approximately centrosymmetrical arrangement of the bromine atoms in the unit cell led to spurious planes of symmetry perpendicular to the a- and c-axes in the Fourier synthesis, but, since the x- and z-co-ordinates of the bromine atom are not

²¹ Tunell, Amer. Min., 1939, 24, 448.

exactly 1, the peak heights within each set of four pseudo-symmetrically related peaks were not exactly identical. We selected three peaks which were rather higher than their "ghosts" and included them (as carbon atoms) with the bromine atom in the calculation of a set of structure factors. The value of R was 42.0%.

With the revised phase constants we evaluated a second three-dimensional electron-density distribution, and from this selected a further five atoms for inclusion in the calculation of a further set of structure factors. The value of R fell to 38.9%. In the subsequent two rounds of Fourier and structure-factor calculation four more peaks were designated as atoms and the value of R was reduced to 36.9%. Prolonged attempts to recognise known chemical features (five- and seven-membered rings, etc.) in the fifth electron-density distribution failed and we were forced to conclude that some of the peaks we had selected as atoms were spurious, *i.e.*, " ghosts " of genuine peaks.

During the five rounds of calculations the x-co-ordinate of the bromine atom had moved slightly further away from the special value of $\frac{1}{4}$, and we therefore decided to recalculate structure factors based solely on the bromine atom; the value of R was 43.7%. The subsequent Fourier synthesis with phases determined by the bromine atom in its revised position was carefully examined from the viewpoint of fitting the five- and seven-membered rings and their substituents into the unit cell without having abnormal contacts. We were able, eventually, to postulate positions for the atoms of the five-membered ring which carries the bromine atom. These five atoms were included with the bromine atom in the calculation of a set of structure amplitudes (R = 40.5%) and phase angles which were then used to derive an electrondensity distribution. In this we were able to discern the seven-membered carbocyclic ring and the two substituent atoms at C(10). The lactone ring was nebulously defined, but its constituent atoms were not sufficiently well resclved to merit inclusion in the eighth structure-factor calculation, which was based, therefore, on twelve light atoms (weighted as carbon) and the bromine. The value of R was 36.6%.

Three more rounds of Fourier and structure-factor calculations, with increasing numbers of atoms included in the structure-factor calculations at each stage, enabled us to place the remaining atoms apart from C(13) and to distinguish between oxygen and carbon atoms. The value of R was then 24.8%.

Three further stages of refinement were carried out by Fourier methods, and C(13) was unambiguously located β -oriented to C(11). Both F_o and F_c syntheses were computed, and atomic co-ordinates obtained by numerical interpolation in the results; errors due to termination of series were corrected and individual isotropic temperature factors assigned. The value of R fell to 20.2%.

In the final stages of the analysis Rollett's least-squares programme ²² for DEUCE was used to refine positional and anisotropic thermal parameters for all atoms other than hydrogen. The weighting scheme employed was:

$$\sqrt{w} = |F_0|/15$$
 if $|F_0| < 15$, $\sqrt{w} = 15/|F_0|$ if $|F_0| > 15$.

After four cycles of calculations the value of R was 14.6%.

Examination of the bond lengths at this stage showed that C(7)-C(11) was about 0.1 Å shorter than expected, whereas C(10)-O(21) was about 0.1 Å longer than expected. We thought that these results might not be inherent in the intensity data, but might be due to neglect of correlation between temperature-factor and positional parameters in the least-squares calculations. We therefore derived from the anisotropic thermal parameters (b_{ij}) for each atom an isotropic temperature factor (B), adjusted the co-ordinates of C(7), C(11), $\dot{C}(10)$, and O(21) to give more acceptable bond lengths, and began further least-squares refinement. The value of R rose initially to 21.4%, fell to 16.4% at the end of the next cycle, and thereafter fell steadily to the final value of 12.9%.

The theoretical atomic scattering factors used in all the structure-factor calculations were those of Berghuis et al.²³ for carbon and oxygen, and the Thomas-Fermi values for bromine.²⁴ The final calculated structure amplitudes and phase constants are listed with the measured values of the structure amplitudes in Table 5. The phase constants of Table 5 and the measured

 ²² Rollett, in "Computing Methods and the Phase Problem in X-Ray Crystal Analysis," ed. Pepinsky, Robertson, and Speakman, Pergamon, Oxford, 1961, p. 87.
 ²³ Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
 ²⁴ "Internationale Tabellen zur Bestimmung von Kristallstrukturen," Borntraeger, Berlin, 1935, 1935. vol. II, p. 572.

Asher and Sim:

TABLE 5

Measured and calculated values of the structure factors

h	k	7	Fo	Fc	α	h	k	l	Fo	Fc	α	k	k	ŀ	F_{o}	F_c	α	h	k	l	Fo	$F_c \alpha$
0 0	1 2	301	28 75 12	33 100 23	270 180 0	1	• 3	4 0 1	29 12 82	32 27 65	210 270 8	2	2	0 1 2	119 112 92	121 131 101	0 218 186	3	1	012	68 76 51	77 270 95 269 53 67
		3	21 76	18 90	180			23	125	131	138			3 4	58 14	63 13	359 325			3	55 21	55 96 16 299
0	3	4 1 2	31 59 14	35 67 14	180 90 90	1	4	4 0 1	52 88 64	54 83 70	275 90 28 7	2	3	0 1 2	10 67 8	16 61 7	0 191 1	3	2	0 1 2	8 49 28	5 270 55 324 32 194
0	4	30	16 21	15 15	270 180			23	23 28	22 30	104 260			3	18 36	20 34	120 106			3	13 24	12 114 24 216
		1 2	40 50	44 58	180 0	1	5	4 0	28 48	31 37	314 90	2	4	ò	116	137	0 58	3	3	o 1	58	69 90 40 211
		3 4	36 15	50 16	0 180	-	-	1	117 28	116	294 82			2	37	35	165			23	77	86 266
0	5	i	30	31	90			3	īž	18	47	~	e	4	37	44	354	7		4	33	34 101
		3	37	33	90 90	1	6	ŏ	18	13	90 275	٢		ĭ	44	43	94 721	1	7	ĩ	26	22 283
0	6	Ö	81	92 71	0 180			ź	6	5	133			3	34	32	204			3	29	27 64
		2	77	88	180	,	7	4	32	32	204	2	6	ō	75	93	180	3	5	0	16	18 90
0	7	4	50	54	ŏ	1	'	ì	37 78	42	138			2	50 54	61	332	2	5	2	28	22 63
Ũ	1	2	ió	iį	270			3	31	29	221	~	-	4	24	19	201	7	Ē	4	18	15 319
0	0	4.	24	22	90	ļ	8	õ	21	19	90	2	'	ĩ	35	25	289	2	0	l	35	36 294
Ū.	0	ĭ	<i>6</i>	87	ŏ	-	0	2	39	2	5 94	2	8	0	8	4	0			3	13	10 258
		3	75	72	180	ı	9	ó	58	58	270			2	20	17	286	3	7	0	80	81 270
0	9	ì	36	38	90			2	58	66	5 81	_	~	4	19	18	279			2	46	53 111
0 1		3	4	5	90 180	,	10	4	39	40	285	2	9	ĩ	18	18	151		~	4	46	42 251
01	.0	2	53	48	0	1	10	1	19	16	5 174			3	17	14	74	,	8	1	37	28 218
0 1	,	4	19	14	180			3	13	5 12	2 149	2	10	0	75	81	0			3	12	11 199
		2	10	9	90	l	11	ĩ	70	72	2 281			2	71	69	184	3	9	0	78	76 90
0 1	2	ö	64	58	190		١	3	25	20		~	••	4	35	27	184			2	22	25 290
		2	42	42	180	ı	12	0	19		270	2	11	2	15	17	134	-	••	4	31	30 87
• •	7	4	9	11	ŏ			2	8	i i	5 28	~		4	15	20	40	,	10	i	26	29 283
	.,	2	7	7	90	,	12	4	15		213	2	12	1	45	50	352			3	17	19 55
0.1	4	4	11	15	. 90	1	1)	1	40		25			3	27	27	164	3	11	ő	25	19 90
0 1	.4	ĭ	25	23	190			3	11	12	2 98	2	13	0	17	15	180			2	16	17 290
• •	5	3	43	45	180	1	14	0	13		5 90	2	13	27	20	20	218	-		4	15	16 32
		2	12	2	270			2	ıź	1	7 34	2	14	4	15	14	246	2	12	3	22	25 299
0 1	6	ó	42	39	180	1	15	0	16	1	270	2	14	ĩ	33	38	171	2	19	2	36	38 87
0 1	6	3	15	11	180			2	23	21		2	15	3	40	36	357	7		4	24	25 263
	- 1	23	12	10	270	ı	16	0	16		90	2	1)	23	7	8	329 183	י ד	14	3	18	20 119
0]	8	ó	8 46	7	120			2	25	2	1 187	2	16	ó	45	44	200	2	19	2	15	17 280
		23	21	26	0	l	17	ó	22	2	270			23	27	26	176	3	16	í	5	5 265
0 2	.9	5	23	20	270			2	26	18	3 93	2	17	4	9	11	180	3	17	Ō	30	23 90
• •		1 2	12	12	0 180	ı	18	0	10		0 90	2	-1	ì	7	6	150 181			2	19	19 285
0 2	1	3	7	9	180	'n	10	ŝ	13		1 75			3	8	7	280	3	18	ó	26	17 90
0 2	2	30	4 24	ó 21	270 180	-	-,	ĭ	32	22	2 268	2	18	Ó	13 26	12	180 14	1	19	ĭ	16	13 81
	_	1 2	18 16	12	0	ı	20	ĩ	4	ē	5 211			23	9 17	20	193 186	3	20	30	13	13 270
o z	3	3.	4 3	7	180 90	1	21	í	33	26	5 92 3 267	2	19	Ó	-i 4 8	5	0 87	1	20	ĩ	6	8 327
02	24 0	1 2	11 26		180 0	1	22 23	í	4	1	2 320	2	20	30	6 35	28	160 180	3	21 21	í	24 7	23 257
		3	11 7	11 9	90 180	2	0	10	9	7	246	-		1 2	14 23	12	196 344	3	22	ź	8 14	7 66
1	1	Ó 1	11 112	7 147	270 70	-	-	1 2	82 91	8	7 90 7 0	2	21	33	-6	9	11 86	34	24 0	l 0	10 89	2 246
		2 3	64 45	88 66	274 267	2	0	3	14 52	12	90 5 180	2	22	0 1	21 11	16	0 159	4	•	1	13 73	10 90 82 180
1	2	4	29 52	39 63	81 90	2	ı	Ó	34 12	4	506			2 3	14 8	14	195 1			3 4	11 61	11 90 66 0
		1 2	35 64	30 60	57 179			23	26 26	2	3 301 2 155	3	0	1 2	32 16	32 16	90 180	4	1	Ó 1	27 36	27 180 36 231
		3	52	- 54	98			4	18	3 14	4 270			3	- 16	: 11	90			2	14	14 211

									\mathbf{T}_{I}	/BI	.е 5	(Ca	ont	inı	ied)								
h	k	l	Fo	F_{c}	α	h	k	l	F_{o}	Fa	α		h	k	1	Fo	F_c	α	h	k	l	F_{o}	F_c a
4	2	3 4 0 1 2	21 18 2 48 6	19 13 63 6	307 66 180 347 231	5	3	1 2 3 0 1	36 14 10 89 18	34 13 11 89 16	167 264 54 270 62		6	4	30123	10 48 38 35 27	11 53 39 28 30	70 0 21 200 162	7	8	01234	14 8 16 13 9	15 270 5 330 17 107 13 191 3 237
4	3	3 4 0 1	64 30 26 45	60 25 24 44	190 191 0 303	5	4	2 3 4 0	32 19 27 18	44 18 27 21	82 280 264 270		6	5	4023	30 21 20 15	26 22 13	351 180 178 224	7	9	0 1 2 3	25 20 12 17	50 90 18 279 10 316 19 92
4	4	2 3 0 1	13 32 34 69	12 34 39 84	40 198 180 183			1 2 3 4	28 8 23 11	18 10 19 12	206 160 167 348		6	6	4 0 1 2	11 15 21 41	10 20 20 39	25 180 330 17	7	10	0 1 2 3	19 18 9 20	16 270 14 225 7 248 19 70
4	5	2 3 4 0	32 22 25	35 21 17 14	1 359 182 180	5 5	5 5	0123	29 44 16	24 53 14	90 278 140		6	7	3 0 1 3	5 4 8	8 5 7 8	273 0 297 159	7	11	0123	17 22 7 32	18 90 18 76 8 222 37 265
•	-	1234	18 15 31	19 14 26	186 215 44	5	6	413	18 25 20	12	5 111 3 308 3 62		6	8	0123	21 39 12	19 45 13	180 191 291	7	12	012	10 18 8	8 90 13 51 4 196 5 347
4	6	0 1 2	58 34 42	69 35 48	129 0 220 188	5	7	4 1 2	17 34 51	15	90 43 267		6	9	401	9 12 17	10 14 19	237 180 167	7	13	10230	31 18 5	31 270 14 103 2 304
4	7	24 0 1 2	24 29 25 25	25 25 23	247 338 180 149 342	5	8	2 4 0 1	31 15 22	24 24	259 106 90 265		6	10	2 3 4 0	7 22 40 21	15 8 22 41 19	145 136 0	7	14 15	03013	6 8 22 5	6 189 9 90 19 288 6 77
4	8	234 01	12 8 32 52	11 6 35 58	195 119 0 11	5	9	3401	9 9 11 40 37	11 41 38	37 128 270 73		6	11	2340	39 5 25 29	39 4 27 27	181 280 357 0	77	16 17	3012	5 24 13 13	5 96 20 90 11 94 10 256
4	9	2 3 4 0	6 47 19 21	9 46 23 20	129 182 30 0	5	10	2340	18 24 19 9	19 24 19	82 279 294		6	12	1 2 4 1	6 9 8 24	7 6 10 23	158 230 355 358	7 7	18 19	3 0 1 0	9 10 9 11	10 269 10 90 8 214 12 270
		1 2 3 4	25 22 9 12	24 19 8 12	35 197 357 310	-		1 2 3 4	12 19 13 9	10 18 17) 113 3 129 7 262 5 279		6	13	2 3 4 0	21 12 15 20	23 11 14 19	313 179 213 180	8	0	2 3 0 1	11 5 38 23	11 86 7 280 39 0 23 90
4	10	0 1 2 3	33 9 47 12	35 10 52 14	180 234 345 5	5	11	0 1 2 3	31 45 11 31	27 44 11 28	270 282 102 8 89		66	13 14	1 2 1 2	11 10 29 18	10 9 25 17	47 93 169 8	8	ı	2 3 0 1	21 10 21 7	23 180 9 90 25 0 9 167
4 4	11 11	4 0 1 2	22 9 13 27	22 8 15 25	202 180 201 358	5	12	0 1 2 3	18 17 10 17	17	5 270 7 322 9 58 9 105		6	15 16	3 2 0 1	8 9 20 17	8 9 16 12	25 342 0 159	8	2	234.0	15 19 9 11	16 228 13 264 15 344 10 0
4	12	3 4 0 1	12 11 32 35	13 11 35 33	175 191 0 185	5	13	0 1 2 3	54 5 21 14	47	90 5 188 9 272 5 251		6	18 19	2131	31 16 11 8	25 15 12 7	201 355 185 346		_	1234	30 10 12 19	33 337 12 285 19 187 10 283
4	13	2 3 4 1	38 29 9 19	37 27 8 22	180 351 338 93	5	14	4 0 1 3	15 18 7 5	14	65 90 100 5 38		ь 6	20	0 1 2 0	15 5 11 7	13 6 10 6	180 170 7 180	8 8	3	0 1 3 0	4 5 9 33	5 61 10 166 29 180
4	14	2 0 1 2	14 20 28 27	12 19 33 25	232 0 354 185	5	15	0 1 3 4	13 24 23 11	10 18 27	0 270 3 87 7 278 3 202		7	0	1 2 3 4	14 4 11 7	14 5 10 8	90 180 270 0			1 2 3 4	25 14 24 13	28 176 13 24 23 3 14 172
4 4	15 16	4 0 0 1	12 5 26 7	11 3 24 7	7 0 180 75	5 5	16 17	0 3 0 1	9 5 26 16	11 21 21 14	1 90 2 332 1 270 1 259		7	1	0 1 2 3	18 21 28 33	19 24 30 33	270 282 72 86	8 8	5 6	0 1 3 1	9 6 11 19	13 180 5 149 9 161 19 145
4	17	2 4 0 1	23 14 5 7	20 17 4 8	345 202 0 346	5	18	234 0	20 10 12 6	17 10 12	7 80 96 2 284 5 270		7	2	40127	9 9 15	9 8 14	270 252 121	8	7	2340	28 5 21 10	26 170 4 159 22 7 6 0
4	18	2301	8 5 9 32	96 28 28	45 114 180 196	5	19	2 0 1 2	10 20 6 14	19	0 69 90 7 263 5 265		7	3	24 0, 1	15 18 57 18	14 17 56 15	213 90 335	8 8	7 8	1 2 4 1	16 5 8 34	16 166 6 253 8 69 36 13
4	19	3	14 4	16 5	353 180	5	20	0 1	5	2	5 90 1 297				3	13	13	275 99			3	.5	2 315
4	20	1 0	7 19	6 20	183 0	5 5	20 21	2 1	4 15	12	5 328 ? 88		7	4	4	1n 37	14 43	90	8	9	4	12 7	13 320 7 304
		1 2	8 17	9 14	22 187	6	ō	0 1	27	24	90				1 2	15 9	15 9	268 189	8	10	2 0	5 19	9 164 19 180
4 4	21 22	3001	-16 4 21	16 16	186 0 180	6	,	234	38 28 27	40 21 20	90		7	5	4012	9 11 34	8 10 32 6	214 270 89 107	8		1230	-9 27 9	8 217 20 349 4 106 6 180
5	0	21	-1 9 8	7 10	1 270	0	-	23	22 11	18	27 158		7	6	3	40 4	40	273 90	Ũ		1 2	5 16	6 314 15 22
5	1	2340	8 42 10 54	7 34 12	180 90 180 90	6	2	4012	13 20 73 23	12 20 77	2 153 0 0 180 166				1 2 3 4	13 12 6 17	13 15 6 8	215 203 327 191	8	12	0 1 2 3	12 11 19 12	9 0 10 166 16 179 13 359
1	-	ĭ 2	53 24	61 26	82 258	6	3	30	26	28	329 180		7	7	0	32 25	35 23	270 231	8	13	í	12	10 217 7 212
5	2	3 0	36 48	36 50	266 90 [.]			1 2	30 13	3ê 11	5 144 253				2 3	20 7	19 5	74 91	8	14	0 1	18 8	15 0 8 19

TABLE 5 (Continued)

						•	. ,				
h k	1 Fo	F_c α	h k	1 Fo	$F_c \alpha$	h k	1 F.	Fc α	h k	1 1.	Fc a
8 15	2 15 3 8 0 4	12 193 9 167 2 0	96	0 11 1 24 2 9	11 270 20 332 7 158	9 14 9 15 9 17	2 11 1 16 0 15	8 267 12 102 11 270	10 8 10 9 10 10	1 10 1 4 0 11	11 159 4 195 13 0
8 16		9 180 14 353	97	0 13	13 90 6 113	9 18 10 0	1 3 0 15	2 299 15 180	11 0 11 1	$1 \frac{16}{9}$	12 90 10 270
8 17 8 18 8 19 8 20	3 5 1 14 1 5	3 135 12 175 5 167 5 32	97 98	2 19 3 13 0 16	17 280 13 261 16 90	10 1	0 9 1 5 2 16	10 180 5 300 16 1	11 2	1 6 2 9 1 9	8 244 8 112 8 326
9 °0	1 12 3 9	12 270 9 90		2 5	4 271 7 35	10 2	1 17 2 5	19 209 6 160	11 3	0 8	7 90 14 281
y 1	2 18 4 12	16 245 11 140	99	1 9 2 14	12 122 13 112	10 3	0 8 1 9	19 959 8 0 9 128	11 4	2 9 1 12	6 307 11 93
92	1 6 2 14	6 87 15 241	9 10	$ \begin{array}{c} 5 & 10 \\ 0 & 24 \\ 1 & 6 \end{array} $	10 264 20 270 4 69	10 4	2 7 3 6 0 16	5 251 4 123 15 0	11 6 11 7	0 8 1 10 0 12	6 90 5 10 12 270
93	2 26 1 12 2 21	0 204 30 270 14 149 18 88	9 11	$ \begin{array}{cccc} $	8 250 7 270 14 254 7 56	10 5	1 8 2 11 0 11 1 10	8 15 12 177 10 0 10 243	11 [°] 8 11 9 12 0	1 4 0 13 0 9	. 7 312 11 270 9 90 8 180
94	3 9 0 8 2 7	11 248 6 90 8 75	9 12	3 8 0 11 2 7	9 101 7 270 6 43	10 6	2 5 3 5 0 17	5 166 6 326 16 180	12 1 12 2 12 3	0 15 2 5 0 6	14 0 2 355 5 180
95	0 18 1 20 2 10 3 18	18 90 19 269 9 36 15 90	9 13	3 8 0 13 1 7 2 9	3 136 13 90 3 349 10 263 3 227	10 7	2 13 0 5 1 6 2 9	15 329 2 180 7 5 8 18	12 4 12 5 12 6 12 8	0 13 0 6 0 10 0 7	11 180 5 180 11 0 3 180
				, ,	T.	ABLE 6					
			Anis	otropic	temper	ature fact	ors (b _{ij}	imes 105)			
C(1)	$b_{11} \\ 1130$	b_{22} b_{33} 286 1820	$b_{12} - 168$	$b_{23} \\ 423$	$b_{13} - 2019$	C(13)	<i>b</i> ₁₁ 1313	b_{22} b_{33} 562 4398	$b_{12} \\ 438$	b ₂₃ 1535	b ₁₃ 1489
C(2) C(3)	1308 1483	30 8 3305 4 50 3 970	68 423	$\begin{array}{r} 444 \\ \mathbf{-704} \end{array}$	$-1423 \\ -271$	C(14) C(15)	1908 1441	714 4754 422 2328	$23 \\ -143$	$-622 \\ -75$	$-2856 \\ 1805$
C(4) C(5)	1001 1268	499 3208 397 4381	425 - 48	-630 191	$-862 \\ 878$	C(16) C(17)	1308 1508	606 2316 642 3944	7 604	-154 - 562	- 1030 998
C(6) C(7)	195 4 1436	452 2016 350 3689	$-619 \\ 127$	$243 \\ 146$	$\begin{array}{r} 1256 \\ 82 \end{array}$	O(18) O(19)	$1824 \\ 1437$	604 3799 437 4157	530 150	$\begin{array}{c} 302 \\ 258 \end{array}$	- 1372 601
C(8) C(9)	$1655 \\ 1271$	⁴⁶¹ 2272 398 7279	$\begin{array}{c} 410\\ 265\end{array}$	$-822 \\ 122$	$\begin{array}{c} 29 \\ -821 \end{array}$	O(20) O(21)	2556 1646	668 1756 300 5036	$\begin{array}{r} 613 \\ 67 \end{array}$	200 - 70	1523 - 83
C(10) C(11)	$1228 \\ 1831$	412 1965 3 73 2447	152 - 37	$\begin{array}{r} 844 \\ - 62 \end{array}$	486 - 181	O(22) Br	$\begin{array}{c} 1194 \\ 1945 \end{array}$	615 5869 329 5460	191 70	$-547 \\ 161$	$-208 \\ -378$

2286 421 2613 159 479 1127 b_{11} b_{33} b_{12} b_{13} b_{22} b23 $(B = 6 Å^2 1767)$ 3456 0 0) 584 0

structure amplitudes were used to derive a final three-dimensional electron-density distribution which is shown in Fig. 1 by means of superimposed contour sections drawn parallel to (001). All the atoms are well resolved, and the oxygen atoms are represented by distinctly higher peaks than the carbon atoms. The final atomic co-ordinates, molecular dimensions, and some non-bonded distances are given in Tables 1 and 2. The parameters defining the anisotropic thermal vibrations are in Table 6; they are values of b_{ij} in the equation:

 $\exp(-B\sin^2\theta/\lambda^2) = 2^{-(b_{11}h^2 + b_{22}k^2 + b_{33}^2l^2 + b_{12}hk + b_{33}kl + b_{13}hl)}$

The standard deviations of the final atomic co-ordinates were derived from the least-squares residuals by means of the equation:

$$\sigma^{2}(x_{i}) = \sum_{j} w_{j}(\Delta F)^{2}/[(n-s) \sum w_{j}(\partial F_{j}/\partial x_{i})^{2}]$$

The results are listed in Table 3.

We are grateful to Professor J. Monteath Robertson, F.R.S., for his encouragement, and to Professor D. H. R. Barton, F.R.S., for supplies of material. The extensive calculations were performed on the Glasgow University DEUCE computer, with programmes devised by Dr. J. S. Rollett and Dr. J. G. Sime. One of us (J. D. M. A.) is indebted to the D.S.I.R. for financial support.

CHEMISTRY DEPARTMENT, THE UNIVERSITY, GLASGOW W.2. [Received, June 8th, 1964.] [Present address (G. A. S.): DEPARTMENT OF CHEMISTRY, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS, U.S.A.]

C(12)